Simplified Poisson Pressure Equation (PPE) and Technical Explanation

The Simplified Equation

For incompressible flow, the pressure field is derived from the Poisson Pressure Equation:

$$\nabla^2 p = -\rho \left(\frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \cdot \frac{\partial v}{\partial y} + 2 \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} \right)$$

This simplified form isolates the core pressure-generating mechanisms arising from velocity-gradient interactions. Any spatial change in velocity—shear, rotation, dilation, or deformation—feeds directly into the source term on the right-hand side. The pressure field is then obtained by inverting the Laplacian, distributing these sources in space according to the Green's function of the operator.

Interpretation in Turbulent Flow

Turbulent eddies contain strong local velocity gradients due to rapid spatial variation in the flow. The PPE captures how these gradients translate into measurable pressure fluctuations:

- Large eddies: Their gradients extend over large spatial regions, producing pressure fields with long spatial correlation lengths. The pressure decays slowly with distance, resulting in broad, low-frequency pressure structures.
- Small eddies: Their gradients are confined to compact regions, generating pressure signatures that decay rapidly. These pressure fields exhibit short coherence lengths and correspond to higher frequencies in the hydrodynamic spectrum.

Why This Is Useful

The simplified PPE provides a clear, physically grounded link between eddy size, gradient magnitude, and pressure-field extent. It enables basic analysis of hydrodynamic pressure behavior without full CFD and provides a framework for interpreting coherence, pseudosound reach, and the transition to acoustically propagating pressure disturbances.

One-Sentence Summary

The simplified PPE demonstrates that pressure originates from velocity-gradient mechanics, and the spatial scale of an eddy governs the spatial reach and coherence of its associated pressure field.